SPP2311

logo_spp
logo_spp

In-stent restenosis in coronary arteries – in silico investigations based on patient-specific clinical data and meta modeling

PIs: Prof. Stefanie Reese, Prof. Marek Behr, Priv.-Doz. Felix Vogt

Coupling of stent-eluted drug distribution in arterial wall and in the artery lumen, for a representative expanded stent section.

Aim:

The project aims at the development and validation of a versatile high throughput computational framework, based on fluoroscopic and intravital optical coherence tomography (OCT) imaging of actual patients and animal experiments, allowing for in silico simulation of the arterial reaction to stent implantation.

Description:

The project aims at the development and validation of a versatile high throughput computational framework, based on fluoroscopic and intravital optical coherence tomography (OCT) imaging of actual patients and animal experiments, allowing for in silico simulation of the arterial reaction to stent implantation. The in silico studies shall crucially support systemic antithrombotic, lipid-lowering and anti-inflammatory drug treatment regimens in addition to personalized treatments. Generalization steps are to be defined which orchestrate the way to tailor stent choice, hemodynamics and execution of the implantation procedure.

Advantages of such an in silico-based implantation procedure are higher speed, better cost effectiveness and enhanced versatility as compared to actual clinical trials as well as experimental setups. The aim is also to avoid animal experiments in the long run. The ultimate goal of the project is to develop a simulation tool (based on meta modeling) which enables quick decisions on the part of the interventional cardiologists, for instance with respect to the geometry of the stent, the extent of balloon overstretch, or the amount/rate of drug elution.

Involved Institutions:

Institute of Applied Mechanics, RWTH Aachen University
Chair for Computational Analysis of Technical Systems, RWTH Aachen University
Clinic for Cardiology, Angiology and Internal Intensive Care Medicine, RWTH Aachen University

Applicants:

Publications

2024

Manjunatha, K.; Ranno, A.; Shi, J.; Schaaps, N.; Florescu, R.; Nilcham, P.; Cornelissen, A.; Behr, M.; Reese, S.

In Silico Reproduction of the Pathophysiology of In-Stent Restenosis Unveröffentlicht

2024.

Abstract | Links | BibTeX

Ranno, A.; Manjunatha, K.; Glitz, A.; Schaaps, N.; Reese, S.; Vogt, F.; Behr, M.

In-silico Analysis of Hemodynamic Indicators in Idealized Stented Coronary Arteries for Varying Stent Indentation Unveröffentlicht

2024.

Abstract | Links | BibTeX

2023

Manjunatha, K.; Schaaps, N.; Behr, M.; Vogt, F.; Reese, S.

Computational Modeling of In-Stent Restenosis: Pharmacokinetic and Pharmacodynamic Evaluation Artikel

In: Computers in Biology and Medicine, Ausg. 167, 2023.

Abstract | Links | BibTeX

Cornelissen, A.; Florescu, R. A.; Reese, S.; Behr, M.; Ranno, A.; Manjunatha, K.; Schaaps, N.; Böhm, C.; Liehn, E. A.; Zhao, L.; Nilcham, P.; Milzi, A.; Schröder, J.; Vogt, F. J.

In-Vivo Assessment of Vascular Injury for the Prediction of In-Stent Restenosis Artikel

In: International Journal of Cardiology, Ausg. 388, 2023.

Abstract | Links | BibTeX

2022

Manjunatha, K.; Behr, M.; Vogt, F.; Reese, S.

A Multiphysics Modeling Approach for In-Stent Restenosis: Theoretical Aspects and Finite Element Implementation Artikel

In: Computers in Biology and Medicine, Bd. 150, 2022.

Abstract | Links | BibTeX

Manjunatha, K.; Behr, M.; Vogt, F.; Reese, S.

Finite Element Modeling of In-Stent Restenosis Buchabschnitt

In: Link, Springer (Hrsg.): S. 305–318, 2022.

Abstract | Links | BibTeX

Aldakheel, F.; Hudobivnik, B.; Soleimani, M.; Wessels, H.; Weissenfels, C.; Marino, M.

Current Trends and Open Problems in Computational Mechanics Buch

Springer, 2022.

Abstract | Links | BibTeX

2020

Haßler, S.; Ranno, A.; Behr, M.

Finite-Element Formulation for Advection–Reaction Equations with Change of Variable and Discontinuity Capturing Artikel

In: CMAME, Ausg. 369, 2020.

Abstract | Links | BibTeX